A NEW SPECIES OF NEOSCIRULA (ACARI: CUNAXIDAE: COLEOSCIRINAE) FROM THE OZARK HIGHLANDS (USA), WITH A NOTE ON BIOGEOGRAPHY

Michael J. SKVARLA1, J. Ray FISHER2, Ashley P. G. DOWLING3

(Received 15 October 2010; accepted 19 May 2011; published online 23 September 2011)

Department of Entomology, 319 Agriculture Building, Fayetteville, Arkansas 72701, USA. mskvarla36@gmail.com (corresponding author)

ABSTRACT — A new species of the family Cunaxidae, Neoscirula reticulata Skvarla n. sp., is described from two locations in the Ozark Highlands of North America. The importance of biodiversity research in this understudied region is discussed, as well as the biogeographic connection between the Interior Highlands and highlands of Mexico in relation to this species. Also, in concordance with recent advances in taxonomic procedures, both N. reticulata and all other described species of Neoscirula have been registered with Zoobank. A comprehensive list of these species, incorporating citations of their original description and Zoobank LSID numbers, is provided to aid future researchers. Images were created using digital illustration techniques designed to speed-up the description process and were subsequently deposited into Morphbank. Finally, an updated key to the adults of world species is included.

KEYWORDS — Acari; Cunaxidae; Taxonomy; Ozark; digital illustration; key

INTRODUCTION

Cunaxidae are predatory mites found in soil/litter, vegetation, vertebrate nests, agricultural settings, and stored products (Den Heyer 1977; Ferla and Moraes 1998; Grout and Ueckermann 1999; Gupta and Chattopadhyay 1978; Hughes 1976). These mites are well known for their raptorial, spine-equipped palpi (except in the subfamily Bonziniinae) that are used to grasp prey (Krantz and Walter 2009). Unlike Cunaxinae, which ambush passing prey with their long spiny palpi, Coleoscirinae (including Neoscirula) and Cunaxoidinae are active predators with shorter, less adorned palpi that search out less active prey, including nematodes (Den Heyer 1981; Krantz and Walter 2009; Walter, Hunt, and Elliot 1988; Walter and Kaplan 1991).

Twenty-five Neoscirula Den Heyer, 1977 are known worldwide. Only one species has been described from North America north of Mexico, N. kenworthyi Smiley, 1992, which is known only from the type locality in Maryland, USA.

This study marks the first Neoscirula recorded from the Ozark Highlands. The Ozark Highlands are a proposed area of hyperdiversity, comprising some of the oldest continuously exposed land worldwide. As a result, the Ozark Highlands have
potentially served as refugia for species displaced by glaciation or flooding events throughout biological history (The Nature Conservancy, Ozarks Ecoregional Assessment Team 2003). Although many species found in the Ozarks are typical of midwestern North America, many are more characteristic of other continuously exposed refugia such as the southern Appalachian Mountains and Sierra Madre in Mexico. Furthermore, the Interior Highlands (including the Ozarks) is a proposed area of high endemism, with over 200 known endemics (Allen 1990; Redfearn 1986). Nevertheless, in comparison to other regions of suspected hyperdiversity, the region remains grossly understudied with unsettlingly few active researchers investigating basic questions about biogeography and species composition, especially with regard to arthropods (but see Moulton and Stewart 1996 [caddisflies], and Poulton and Stewart 1991 [stoneflies]).

The present work represents another stepping-stone toward resolving this issue, and brings mites, a group well known for being both diverse and underrepresented, into the forefront of Interior Highland biogeographic and biodiversity research.

MATERIALS AND METHODS

Leaf litter samples were collected at two sites in the Ozark Highlands: Steel Creek in the Buffalo National River (Arkansas) and Hercules Glades Wilderness in the Ava-Cassville-Willow Springs ranger district of Mark Twain National Forest (Missouri). Both sites are Eastern mixed deciduous forest dominated by oak (*Quercus*) and hickory (*Carya*), although eastern red cedar (*Juniperus virginiana* L.) was also abundant at the Buffalo National River site. All samples were processed for three to seven days using modified Berlese-Tullgren funnels.

All specimens are mounted in Hoyer’s medium. The holotype and three paratypes are deposited in the Acarology Collection at the University of Arkansas (ACUA). One paratype is deposited in the United States National Museum (USNM) and another paratype is deposited in the Ohio State University Acarology Collection (OSAL).

In accordance with recent efforts to make taxonomic information more attainable, both *Neoscirula reticulata* and all other known *Neoscirula* have been registered with ZooBank (http://www.zoobank.org/). A list of LSID numbers and descriptions is given with corresponding species in Table 1.

All line drawings were created digitally from montaged compound micrographs using the vector-based Adobe Illustrator CS5 and a Wacom Cintiq 21UX with touch sensitive, draw-onscreen capability. This process, described by Fisher and Dowling (2010), is designed to greatly speed the drawing process by eliminating paper steps. Line drawings have been submitted to MorphBank (http://www.morphbank.net).

All measurements are from type specimens and given in micrometers (µm). Body length is measured from the posterior limit of the idiosoma to the anterior edge of the propodosomal shield. Leg length is measured from the proximal edge of the trochanter to the distal end of the claw. Lengths are reported as the range recorded followed parenthetically by the median.

The setal notation follows Kethley (1990) as it has been applied to cunaxids by Swift (1996) and Den Heyer and Castro (2008a). The following abbreviations are used: attenuate solenidion (ats), bulbous solenidion (bsb), blunt rod-like solenidion (bsl), dorsodistal solenidion (dtsl), famulus (fam) (=peg organ), microseta (mst), paracoxal simple tactile seta (pcs), spine-like seta (spls), simple tactile seta (sts), terminal solenidion (tsl), trichobothrium (T) (Fig. 1).

Neoscirula Den Heyer, 1977

saying that \(hg1 \) is only bent and not truly geniculate. The authors agree with Den Heyer and Castro that *Neoscirula* should be placed in Coleoscirinae.

The palpi of *Neoscirula* are five-segmented and end in a strong claw, which is complemented with a tooth in some species; they extend to the tip of the hypognathum or slightly beyond. The palp tibiotarsus is short and cone-like. Four pairs of setae are present on the hypognathum (\(hg1-4 \)); \(hg1 \) is longest and in some species bent at 90 degrees. Adoral setae present or absent.

A cheliceral seta is usually present near the digit, though may be absent. The propodosomal shield is weakly sclerotized and ill-defined. It is granulated or papillated; some species possess subcuticular reticulations. Coxal plates I and II may be separate or fused medially into a single sternal shield. Coxal plates III and IV contiguous on either side, restricted to area around trochanteral bases. Dorso-cupules \(in \) present laterad to e\(_1\); ventral cupules \(il \) present near h\(_2\), anal plates. All legs are shorter than body. The basifemur and telofemur are fused but retain the suture; each has a dorsolateral simple or spine-like seta. Ambulacrual claws are smooth.

Table 1: Known species of *Neoscirula*, associated descriptions, and ZooBank LSID numbers.

<table>
<thead>
<tr>
<th>Species</th>
<th>Citation</th>
<th>LSID</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. aliciae</td>
<td>Mejia-Recamier & Palacios-Vargas, 2007</td>
<td>urn:lsid:zoobank.org:act:E5176502-3E9F-4C68-8E8B-AB00B89871BA</td>
</tr>
<tr>
<td>N. aspirasi</td>
<td>Corpuz-Raros, 1996</td>
<td>urn:lsid:zoobank.org:act:5833ED0A-7B36-4B3E-A3CB-10ADE507B322</td>
</tr>
<tr>
<td>N. flechtmanni</td>
<td>Den Heyer & Castro, 2008</td>
<td>urn:lsid:zoobank.org:act:2DE430BC-7B08-4C5B-82CD-CB4F400FE16B</td>
</tr>
<tr>
<td>N. hoffmannae</td>
<td>Mejia-Recamier & Palacios-Vargas, 2007</td>
<td>urn:lsid:zoobank.org:act:C1CC44D5-F674-4431-B950-B3770CC1A6BD</td>
</tr>
<tr>
<td>N. imperata</td>
<td>Corpuz-Raros, 1996</td>
<td>urn:lsid:zoobank.org:act:D572DA60-1F0A-4C81-B66B-DEB911085A7D</td>
</tr>
<tr>
<td>N. luxtoni</td>
<td>Smiley, 1992</td>
<td>urn:lsid:zoobank.org:act:77B5021F-6EFE-4C2A-849E-AD30D4DDC1D</td>
</tr>
<tr>
<td>N. makilingica</td>
<td>Corpuz-Raros, 1996</td>
<td>urn:lsid:zoobank.org:act:54398742-257C-4C7A-B8B8-B571A5B2CCD</td>
</tr>
<tr>
<td>N. natakensis</td>
<td>Den Heyer, 1977</td>
<td>urn:lsid:zoobank.org:act:ED1DC4C2-6EC3-43B6-6E3E-6EAEFA5DC8B1</td>
</tr>
<tr>
<td>N. ogaeai</td>
<td>(Shiba, 1978)</td>
<td>urn:lsid:zoobank.org:act:3F82DB80-6187-4703-9930-906264789E8B</td>
</tr>
<tr>
<td>N. proctorae</td>
<td>Smiley, 1992</td>
<td>urn:lsid:zoobank.org:act:33AA52C3-FF88-4D3F-8AA3-84BF2629E7F</td>
</tr>
<tr>
<td>N. putinglupa</td>
<td>Corpuz-Raros, 1996</td>
<td>urn:lsid:zoobank.org:act:232304D9-78C5-4B6E-9262-8C97120FF74</td>
</tr>
<tr>
<td>N. reticulata</td>
<td>Skvarla et. al. 2011</td>
<td>urn:lsid:zoobank.org:act:46F9917D-C43D-4346-9DD5-840D077C072C</td>
</tr>
<tr>
<td>N. sainoi</td>
<td>Lin, in Lin & Zhang, 2002</td>
<td>urn:lsid:zoobank.org:act:D0B29B4C-6EB3-4E7D-9E41-937B05AEF3C8</td>
</tr>
<tr>
<td>N. theroni</td>
<td>Den Heyer, 1977</td>
<td>urn:lsid:zoobank.org:act:97504D84-3D0B-844-AF6-C476F34D81B</td>
</tr>
</tbody>
</table>

Neoscirula reticulata Skvarla sp. nov.

urn:lsid:zoobank.org:act:46F9917D-C43D-4346-9DD5-840D077C072C

285
Diagnosis

Neoscirula reticulata Skvarla _sp. nov._ and _N. baloghi_ Mejía-Recamier and Palacios-Vargas, 2007 can be distinguished from all other _Neoscirula_ by a lack of a cheliceral seta and medially fused coxal plates I and II. _N. reticulata_ can be distinguished from _N. baloghi_ by the presence of reticulations on the chelicerae, as well as differences in leg setal complements as follows: genua II, 2 ats-5 sts; genua IV, 1 ats-5 sts.

Female

Dorsum — (Fig. 2a). Single oval propodosomal shield; finely granulated, lacking subcuticular reticulation. Two setose sensilla, vi and sce, on shield; 95 and 82, respectively. Two setae, ve and sci, also on shield, 21 and 9, respectively. Seven pairs of dorsal hysterosomal setae present; all occur on sclerotized, granulated plates. Setae _c1_, _c2_, _d1_, _e1_, and _f2_ approximately equal in length (15, 12, 14, 16, 17); _f1_ and _h1_ longer (21, 24). _f2_ absent. Cupule _im_ present, laterad to _e1_. Integument between setae striated.

Venter — (Fig. 2b). Coxal plates I and II well sclerotized, fine subcuticular granulation forming striations. Plates fused medially into a sternal shield with narrowly rounded posterior limit. Sternal shield bearing with 7 pairs of sts, sometimes capturing an extra pair of setae between coxae III. Coxal plates III and IV also well sclerotized and finely granulated. Coxae III with 3 sts, one of which may appear dorsal; coxae IV with 2 sts and 1 pcs. 3 pairs of setae on integument between coxae IV (not including pair sometimes captured by sternal shield). Granulae on integument form striations around coxae. Genital plates weakly sclerotized with 4 pairs of setae and 2 pairs of underlying genital papillae. Anal plates bearing 2 pairs of pseudanal setae (_ps1_ and _ps2_). Cupule _ih_ present laterad to para-anal setae (_pa_).

Gnathosoma — (Fig. 3). _Hypognathum_ (Fig. 3a) small, less than ¼ length of idiosoma, 69 – 73 (71). Four pairs of setae (_hg1-4_): _hg1_ is bent and nearly

Figure 1: Examples of the different types of setae referred to in the text by abbreviations. a – Attenuate solenidion (ats). b – Bulbous solenidion (bbsl). c – Two types of blunt rod-like solenidion (bsl). d – Famulus (fam)(=peg organ). e – Microseta (mst). f – Simple tactile seta. g – Spine-like seta (spls). h – Trichobothrium (T).
FIGURE 2: *Neoscirula reticulata*, sp. nov., female idiosoma. a – Dorsum. b – Venter, including trochanters I-IV and basifemora I-IV.
twice as long (20) as the other three (11, 10, 9). Ado-
ral setae absent. Single row of posterior polygonal
subcuticular sculpturing present. Chelicera (Fig. 3b)
68 – 75 (71), thin distally with broad base; integu-
ment granulated dorsally, dorsomedially reticulate,
and smooth ventrally. Palp (Fig. 3c) 44 – 53 (49).
Setal complement: trochanter, 0; basifemur, 1 sts;
telofemur, 1 spls; genu, 4 sts; tibiotarsus, 4 sts, 1
spls, 1 dtsl. The tibiotarsus ends in a stout claw
which lacks a tooth.

Legs — (Fig. 4a-d). All shorter than idiosoma.
Length: I, 125 – 155 (143); II, 118 – 138 (127); III,
135 – 155 (146); IV, 153 – 190 (165). Setal formu-
lae: trochanters, 1-1-2-1 sts; basifemora, 4-5-3-1 sts;
telofemora, 5-5-4-3 sts; genua I, 3 ats, 1mst, 4 sts;
genua II, 2 ats, 5 sts; genua III, 1 ats, 5 sts; genua
IV, 1 ats, 5 sts; tibiae I, 2 bls, 5 sts; tibiae II, 1 bsl, 5
sts; tibiae III, 1 bsl, 5 sts; tibiae IV, 1 T, 4 sts; tarsi I,
2 bbsl, 2 ats, 1 fam, 2 tsl, 20 sts; tarsi II, 1 bsl, 20 sts;
tarsi III, 1 tsl, 19 sts; tarsi IV, 19 sts.

Male and immatures

Unknown.

Etymology

This species is named for the distinctive reticulations
on the chelicerae.

Material examined (all on slides)

Holotype: female, ex. mixed cedar and oak litter,
USA, Arkansas, Newton Co, Buffalo National
River, Steel Creek (36°01.942 N, 93°20.010 W), 28
May 2010, J. R. Fisher and M. J. Skvarla, APGD
10-0528-008,001; Paratype: 2 females, ex. mixed
cedar and oak litter, USA, Arkansas, Newton Co,
Buffalo National River, Steel Creek (N 36°01.942,
W 093°20.010), 28 May 2010, J. R. Fisher and M. J.
Skvarla, APGD 10-0528-008,002-003; 3 females,
ex. litter, USA, Missouri, Taney Co., Mark Twain Na-
tional Forest (N 36°40.017, W 92°53.367), 22 May
2010, J. R. Fisher and D. M. Keeler, APGD 10-0522-
002, 001-003.

Remarks

Neoscirula reticulata Skvarla sp. nov., from the
North American Ozark Highlands, most resem-
bles *N. baloghi* Mejía-Recamier and Palacios-Vargas,
2007, from Jalisco, Mexico. This biogeographic re-
lationship between the temperate forests of eastern
North America and Mexico is not unusual. Well-known cases displaying this affinity include mosses (Crum 1952; Redfearn 1986), higher plants (Braun 1955; Dressler 1954; Miranda and Sharp 1950; Watson 1891), Fungi (Miranda and Sharp 1950, Sharp 1948), and snakes, flying squirrels and plethodontid salamanders (see Martin and Harrel 1957).

To the authors’ knowledge, the present study represents the first attempt to implicate a mite, and perhaps any arthropod, as a representative of the Mexican-East North American affinity. The presumed low-dispersal capabilities and hyperdiversity of soil/litter dwelling organisms, as well as their underrepresentation in biogeographic studies, make them perfect candidates to address such questions.

Key to adult Neoscirula

This key has been updated from Mejía-Recamier and Palacios-Vargas (2007) to include *N. reticulata*, *N. vitulus*, *N. laboensis*, *N. taclobanensis*, *N. flechtmanni*, *N. oliveirai*, *N. queirozi*, and *N. queirozi*. Unless otherwise noted, setae are simple.

1. Coxal plates I-II fused to form a sternal shield . . 2
 — Coxal plates I-II widely separated 6

2. Cheliceral seta present 3
 — Cheliceral seta absent 5
3 Palp basifemoral dorsal seta spine-like (Fig. 5a); Luzon Is., Philippines \(N. \) makilingica
— Palp basifemoral dorsal seta simple (Fig. 5a') . 4

4 Propodosomal shield with polygonal subcuticular sculpturing (Fig. 5b); posteromedial portion of sternal shield V-shaped, without polygonal sculpturing (Fig. 5c); 6 pairs of setae between coxae III-IV (excluding genital setae); Luzon Is., Philippines \(N. \) aspirasi
— Propodosomal shield without polygonal subcuticular sculpturing (Fig. 5b'); posteromedial portion of sternal shield rounded, with polygonal sculpturing (Fig. 5c'); 4 pairs of setae between coxae III-IV (excluding genital setae); Malaysia; Philippines \(N. \) oleavina

5 Chelicerae with dorsomedial reticulations (Fig. 3b); genua II with 5 setae and 2 solenidia; genua IV with 5 setae and 1 solenidion; Interior Highlands, USA \(N. \) reticulata sp. nov.
— Chelicerae without dorsomedial reticulations; genua II with 4 setae and 2 solenidia; genua IV with 4 setae and 1 solenidion; Jalisco, Mexico \(N. \) baloghi

6 Palp genua with hook-like apophysis (Fig. 5d); South Africa \(N. \) natensis
— Palp genua without hook-like apophysis (Fig. 5d') . 7

7 Palp tibiotarsal claw with a tooth, giving bifid appearance (Fig. 5e)
— Palp tibiotarsal claw without a tooth (Fig. 5e') . 8

8 Cheliceral seta present; palpal tibiotarsi with tubercle (Fig. 5f)
— Cheliceral seta absent; palp tibiotarsi without tubercle (Fig. 5f'); São Paulo, Brazil \(N. \) oliveiri

9 Basifemora II with 4 setae; telofemora I-II 4-4 setae; hypognathum with ventro-apical shield-like process (Fig. 5g); New Zealand; Philippines \(N. \) luxtoni
— Basifemora II with 5 or 6 setae; telofemora I-II 5-5 setae; hypognathum without ventro-apical shield-like process (Fig. 5g') . 10

10 Basifemora II with 5 setae
— Basifemora II with 6 setae . 11

11 Basifemora I with 4 setae; telofemora III with 4 setae; 7 pairs of setae between coxae III-IV (excluding genital setae); Jalisco, Mexico \(N. \) aliciae
— Basifemora I with 5 setae; telofemora III with 3 setae; 5 pairs of setae between coxae III-IV (excluding genital setae); Luzon Is., Philippines \(N. \) labonis

12 Chelicerae tapering to digit gradually (Fig. 5h); Fujian, China \(N. \) biden
— Chelicerae tapering to digit suddenly (Fig. 5h'); São Paulo, Brazil \(N. \) flechtmanni

13 Palp basifemoral dorsal seta spine-like (Fig. 5a)
— Palp basifemoral dorsal seta simple (Fig. 5a'). . 14

14 Telofemora I-II with 4-4 setae; New Zealand
— Telofemora I-II with 5-5 setae . 15

15 Propodosomal shield with polygonal subcuticular sculpturing (Fig. 5i); Fujian, China \(N. \) saitoi
— Propodosomal shield without polygonal subcuticular sculpturing (Fig. 5i') . 16

16 Cheliceral seta short, less than half the length of movable digit; South Africa \(N. \) sevidi
— Cheliceral seta long, nearly as long or longer than movable digit . 17

17 Chelicerae basally narrow, 5-6 times longer than wide; Jalisco, Mexico \(N. \) hoffmannace
— Chelicerae basally broad, 2-3 times longer than wide; São Paulo, Brazil \(N. \) queirozi

18 Coxal plates I-II with polygonal subcuticular sculpturing (as in Fig. 5c)
— Coxal plates I-II without polygonal subcuticular sculpturing (as in Fig. 5c') . 23
19 Propodosomal shield with polygonal subcuticular sculpturing (Fig. 5b) 20
— Propodosomal shield without polygonal subcuticular sculpturing (Fig. 5b') 21

20 Basifemora II with 4 setae; telofemora I-II 4-4 setae; Maryland, USA N. kenworthyi
— Basifemora II with 5 setae; telofemora I-II with 5-5 setae; Leyte Is., Philippines N. taclobanensis

21 Hypognathal setae h_g^1 more than two times as long as setae h_g^2; coxae II with 4 setae; Fujian, China N. maiofengensis
— Hypognathal setae h_g^1 no more than two times as long as setae h_g^2; coxae II with 3 setae 22

22 Chelicerae basally narrow, less than three times the width of the distal end; hypognathum narrow, nearly twice as long as wide; Uzbekistan .. N. vitulus
— Chelicerae basally broad, four times the width of the distal end; hypognathum wide, nearly as wide as long; South Africa .. N. delareyi

23 Propodosomal shield with polygonal subcuticular sculpturing 24
— Propodosomal shield without polygonal subcuticular sculpturing; Luzon Is., Philippines N. imperata

24 Subcapitulum with row of basal polygonal subcuticular sculpturing (Fig. 5j); ventrally with 7 pairs of simple setae between coxae III-IV 25
— Subcapitulum without row of basal polygonal subcuticular sculpturing (Fig. 5j'); ventrally with 6 pairs of simple setae between coxae III-IV; Luzon Is., Philippines .. N. abraensis

25 Basifemora II with 4 setae; telofemora I-II with 4-4 setae; Western Transvaal, South Africa N. theroni
— Basifemora II with 5 setae; telofemora I-II with 5-5 setae; Luzon Is., Philippines N. puntlingupa

ACKNOWLEDGEMENTS

The authors thank Danielle Keeler for her assistance in collecting the specimens described in this manuscript and the U.S. National Park Service and the U.S. Forest Service for granting us access and permission to collection sites. We also thank the anonymous reviewers for their helpful comments.

REFERENCES

COPYRIGHT

This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.